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Surface buoyancy gradients over a quasigeostrophic fluid permit the existence of surface-6
trapped Rossby waves. The interplay of these Rossby waves with surface quasigeostrophic7
turbulence results in latitudinally inhomogeneous mixing that, under certain conditions,8
culminates in a surface buoyancy staircase: a meridional buoyancy profile consisting of9
mixed-zones punctuated by sharp buoyancy gradients, with eastward jets centred at the sharp10
gradients and weaker westward flows in between. In this article, we investigate the emergence11
of this buoyancy staircase limit in surface quasigeostrophic turbulence and we examine12
the dependence of the resulting dynamics on the vertical stratification. Over decreasing13
stratification [d𝑁 (𝑧)/d𝑧 ⩽ 0, where 𝑁 (𝑧) is the buoyancy frequency], we obtain flows14
with a longer interaction range (than in uniform stratification) and highly dispersive Rossby15
waves. In the staircase limit, we find straight jets that are perturbed by eastward propagating16
along jet waves, similar to two-dimensional barotropic 𝛽-plane turbulence. In contrast, over17
increasing stratification [d𝑁 (𝑧)/d𝑧 ⩾ 0], we obtain flows with shorter interaction range18
and weakly dispersive Rossby waves. In the staircase limit, we find sinuous jets with large19
latitudinal meanders whose shape evolves in time due to the westward propagation of weakly20
dispersive along jet waves. These along jet waves have larger amplitudes over increasing21
stratification than over decreasing stratification, and, as a result, the ratio of domain-averaged22
zonal to meridional speeds is two to three times smaller over increasing stratification than23
over decreasing stratification. Finally, we find that, for a given Rhines wavenumber, jets over24
increasing stratification are closer together than jets over decreasing stratification.25

Key words:26

1. Introduction27

Perturbations to a barotropic (i.e., depth-independent) fluid with a background potential28
vorticity gradient, 𝛽 > 0, propagate westward as Rossby waves. In a turbulent flow,29
the non-linear interplay between Rossby waves and turbulence results in the latitudinally30
inhomogeneous mixing of potential vorticity, which, through a positive dynamical feedback,31
spontaneously reorganizes the flow into one characterized by eastward jets (Dritschel &32
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McIntyre 2008). The ultimate limit of such inhomogeneous mixing, which can be achieved33
for sufficiently large values of 𝛽, is a potential vorticity staircase: a piecewise constant34
potential vorticity profile consisting well-mixed regions separated by isolated discontinuities,35
with eastward jets centred at the discontinuities and westward flows in between (Danilov &36
Gurarie 2004; Dunkerton & Scott 2008; Scott & Dritschel 2012, 2019).37
Analogously, a buoyancy gradient at the surface of a quasigeostrophic fluid supports the38

existence of surface-trapped Rossby waves that are less dispersive than their barotropic39
counterparts (Held et al. 1995; Lapeyre 2017). The purpose of this article is to investigate40
the formation of zonal jets in the presence of a background surface buoyancy gradient and41
to examine the realizability of surface buoyancy staircases in the surface quasigeostrophic42
model. Although the present study is the first to systematically investigate the emergence of43
surface quasigeostrophic jets, there are previous studies which make use of the uniformly44
stratified surface quasigeostrophic model with a background buoyancy gradient. These45
include Smith et al. (2002), who derive the dependence of the diffusion coefficient of a46
passive tracer in the presence a background buoyancy gradient. Another is Sukhatme&Smith47
(2009), who, in their investigation of 𝛼-turbulence models with a background gradient, note48
that, because of the decreased interaction range, surface quasigeostrophic jets in uniform49
stratification should be narrower than their counterparts in the barotropic model. Finally,50
Lapeyre (2017) demonstrates that jets can indeed form in the uniformly stratified surface51
quasigeostrophic model.52
We also investigate how surface quasigeostrophic jets depend on the underlying vertical53

stratification. Yassin & Griffies (2022) show that the vertical stratification modifies the54
interaction range of vortices in the surface quasigeostrophic model. Suppose we have an55
infinitely deep fluid governed by the time-evolution of geostrophic buoyancy anomalies at its56
upper boundary. Then if the stratification is decreasing [𝑁 ′(𝑧) ⩽ 0, where 𝑁 (𝑧) is buoyancy57
frequency] towards the fluid’s surface (that is, the upper boundary), then the interaction range58
is longer than in the uniformly stratified model and the resulting turbulence is characterized59
by thin buoyancy filaments — analogous to the thin vorticity filaments in two-dimensional60
barotropic turbulence. Conversely, if the stratification is increasing [𝑁 ′(𝑧) ⩾ 0] towards the61
surface, then the interaction range is shorter than in uniform stratification, and the buoyancy62
field appears spatially diffuse and lacks thin filamentary structures. In this article, we find63
that the interaction range is related to Rossby wave dispersion: flows with a longer interaction64
range have more dispersive Rossby waves whereas flows with a shorter interaction range have65
less dispersive Rossby waves. One of our aims is to characterize the dependence of surface66
quasigeostrophic jets on the functional form of the vertical stratification.67
There are two motivations behind the present work. The first is its potential relevance68

to the upper ocean. Buoyancy anomalies at the ocean’s surface are governed by the surface69
quasigeostrophicmodel (Lapeyre&Klein 2006; LaCasce&Mahadevan 2006; Isern-Fontanet70
et al. 2006). Both numerical (Isern-Fontanet et al. 2008; Lapeyre 2009; Qiu et al. 2016, 2020;71
Miracca-Lage et al. 2022) as well as observational (González-Haro & Isern-Fontanet 2014)72
studies indicate that a significant fraction of the surface geostrophic velocity is induced by73
sea surface buoyancy anomalies, especially over wintertime extratropical currents. Moreover,74
upper ocean turbulence has been found to be anisotropic (Maximenko et al. 2005; Scott et al.75
2008), with significant differences in anisotropy between major extratropical currents and76
other regions in the ocean (Wang et al. 2019). However, our neglect of the planetary 𝛽 effect,77
as well our assumption of vanishing interior potential vorticity, may limit the direct relevance78
of this study to the upper ocean.79
The second motivation is that the variable stratification surface quasigeostrophic model80

is a simple two-dimensional model in which we can investigate how jet dynamics depend81
on the stratification’s vertical structure. Another such model is the equivalent barotropic82
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model for which the deformation radius represents the rigidity of the free surface. Small83
values of the deformation radius lead to a pliable free surface allowing a significant degree84
of horizontal divergence. The resulting flow then has an exponentially short interaction85
range, with a horizontal attenuation on the order of the deformation radius (Polvani et al.86
1989), and with approximately non-dispersive Rossby waves. Consequently, for a finite87
deformation radius, we obtain jets whose width is on the order of the deformation radius88
with a fixed meandering shape (Scott et al. 2022). In contrast, for the variable stratification89
surface quasigeostrophic model, rather than just specifying a constant (i.e., the deformation90
wavenumber), one instead has to specify the stratification’s functional form, 𝑁 (𝑧). Over91
decreasing stratification [𝑁 ′(𝑧) < 0], because of the longer interaction range and the more92
dispersivewaves, we obtain jets similar to the two-dimensional barotropicmodel. Conversely,93
over increasing stratification [𝑁 ′(𝑧) > 0], the shorter interaction range along with the weakly94
dispersive waves lead to sinuous jets whose shape evolves in time through the propagation95
of weakly dispersive along jet waves. Moreover, because of these along jet waves, a smaller96
fraction of the total energy is contained in the zonal mode over increasing stratification (with a97
shorter interaction range) than over decreasing stratification (with a longer interaction range).98
The remainder of this article is organized as follows. Section 2 introduces the variable strat-99

ification surface quasigeostrophic model and shows how the stratification’s vertical structure100
controls both the interaction range of point vortices as well as the dispersion of surface-101
trapped Rossby waves. Then, in section 3, we introduce two wavenumbers, 𝑘 𝜀 and 𝑘𝑟 , whose102
ratio, 𝑘 𝜀/𝑘𝑟 , forms the key non-dimensional parameter of this study; here, 𝑘 𝜀 is awavenumber103
depending on the energy injection rate whereas 𝑘𝑟 is a wavenumber depending on surface104
damping rate. This non-dimensional number is a generalization of the non-dimensional105
number used in previous studies (Danilov & Gurarie 2002; Sukoriansky et al. 2007; Scott106
& Dritschel 2012). By considering an idealized buoyancy staircase, we also investigate how107
the Rhines wavenumber relates to the jet spacing under decreasing, increasing, and uniform108
stratification. Section 4 then presents numerical experiments detailing the emergence of the109
staircase limit as 𝑘 𝜀/𝑘𝑟 is increased for various stratification profiles. In addition, we also110
present experiments where we fix the external parameters and vary the vertical stratification111
alone. Finally, we conclude in section 5.112

2. The interaction range and wave dispersion113

2.1. Equations of motion114

Consider an infinitely deep fluid with zero interior potential vorticity. The geostrophic115
streamfunction, 𝜓, then satisfies116

𝜕

𝜕𝑧

(
1
𝜎2

𝜕𝜓

𝜕𝑧

)
+ ∇2𝜓 = 0 (2.1)117

in the fluid interior, 𝑧 ∈ (−∞, 0). The horizontal Laplacian is denoted by ∇2 = 𝜕2
𝑥 + 𝜕2

𝑦 and118
the non-dimensional stratification is given by119

𝜎(𝑧) = 𝑁 (𝑧)/ 𝑓 , (2.2)120

where 𝑁 (𝑧) is the buoyancy frequency and 𝑓 is the constant local value of the Coriolis121
parameter. Time-evolution is determined by the material conservation of surface potential122
vorticity (Bretherton 1966),123

𝜃 = − 1
𝜎2

0

𝜕𝜓

𝜕𝑧

���
𝑧=0

, (2.3)124
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at the upper boundary, 𝑧 = 0, where 𝜎0 = 𝜎(0). Explicitly, the time-evolution equation is125

𝜕𝜃

𝜕𝑡
+ 𝐽 (𝜓, 𝜃) + Λ 𝜕𝑥𝜃 = 𝐹 − 𝐷, (2.4)126

at 𝑧 = 0, where 𝐽 (𝜓, 𝜃) = 𝜕𝑥𝜓 𝜕𝑦𝜃−𝜕𝑥𝜃 𝜕𝑦 𝜓 represents the advection of 𝜃 by the geostrophic127
velocity, 𝒖 = �̂� × ∇𝜓. The frequency, Λ, is given by128

Λ =
1
𝜎2

0

d𝑈
d𝑧

���
𝑧=0

, (2.5)129

where 𝑈 (𝑧) is a background zonal geostrophic flow. Without loss of generality, we have130
assumed that𝑈 (0) = 0 in the time-evolution equation (2.4) to eliminate a constant advective131
term. The dissipation, 𝐷, consists of linear damping and small-scale dissipation,132

𝐷 = 𝑟 𝜃 + ssd, (2.6)133

where 𝑟 is the damping rate. The forcing, 𝐹, and the small-scale dissipation, ssd, are described134
in section 4.135
The surface buoyancy anomaly, 𝑏 |𝑧=0, is related to the surface potential vorticity, 𝜃, through136

𝑏 |𝑧=0 = − 𝑓 𝜎2
0 𝜃. (2.7)137

Therefore, the time-evolution equation (2.4) equivalently states that surface buoyancy138
anomalies are materially conserved in the absence of forcing and dissipation. In addition, the139
frequency, Λ, corresponds to a meridional buoyancy gradient,140

d𝐵
d𝑦

���
𝑧=0

= − 𝑓 𝜎2
0 Λ, (2.8)141

where 𝐵(𝑦, 𝑧) is the buoyancy field that is in geostrophic balance with background zonal142
velocity,𝑈 (𝑧).143
If we further assume a doubly periodic domain in the horizontal, then we can expand the144

streamfunction as145

𝜓(𝒓, 𝑧, 𝑡) =
∑︁
𝒌

�̂�𝒌 (𝑡) Ψ𝑘 (𝑧) ei𝒌 ·𝒙, (2.9)146

where 𝒙 = (𝑥, 𝑦) is the horizontal position vector, 𝑧 is the vertical coordinate, 𝒌 = (𝑘𝑥 , 𝑘𝑦) is147
the horizontal wavevector, 𝑘 = |𝒌 | is the horizontal wavenumber, and 𝑡 is the time coordinate.148
The non-dimensional wavenumber-dependent vertical structure, Ψ𝑘 (𝑧), is determined by the149
boundary value problem (Yassin & Griffies 2022)150

− d
d𝑧

(
1
𝜎2

dΨ𝑘

d𝑧

)
+ 𝑘2 Ψ𝑘 (𝑧) = 0, (2.10)151

with the upper boundary condition152

Ψ𝑘 (0) = 1, (2.11)153

and lower boundary condition154

Ψ𝑘 → 0 as 𝑧 → −∞. (2.12)155

The upper boundary condition (2.11) is a normalization for the vertical structure, Ψ𝑘 (𝑧),156
chosen so that157

𝜓(𝒓, 𝑧 = 0, 𝑡) =
∑︁
𝒌

�̂�𝒌 (𝑡) ei𝒌 ·𝒙. (2.13)158

Focus on Fluids articles must not exceed this page length



5

Figure 1: The inversion functions, 𝑚(𝑘) [in panel (a)] for two stratification profiles [panel
(b)] given by the piecewise stratification profile (2.18). One stratification profile is

increasing [𝜎′(𝑧) ⩾ 0, blue], with 𝜎0 = 1, 𝜎pyc = 0.15, ℎmix = 0.01, and ℎlin = 0.05. The
other stratification profile is decreasing [𝜎′(𝑧) ⩽ 0, red] with 𝜎0 = 1, 𝜎pyc = 10,

ℎmix = 0.01, and ℎlin = 0.05. The thin black line is given by 𝑘/𝜎0 where 𝜎0 = 1, whereas
the blue and red lines are given by 𝑘/𝜎pyc with 𝜎pyc = 0.15 for the thin blue line and

𝜎pyc = 10 for the thin red line.

The corresponding Fourier expansion of the surface potential vorticity is given by159

𝜃 (𝒓, 𝑡) =
∑︁
𝒌

𝜃𝒌 (𝑡) ei𝒌 ·𝒙, (2.14)160

where161

𝜃𝒌 = −𝑚(𝑘) �̂�𝒌 , (2.15)162

and the function 𝑚(𝑘) is given by163

𝑚(𝑘) = 1
𝜎2

0

dΨ𝑘 (0)
d𝑧

. (2.16)164

The function 𝑚(𝑘) relates 𝜃𝒌 to �̂�𝒌 in the Fourier space inversion relation (2.15) and so we165
call 𝑚(𝑘) the inversion function.166
To recover the well-known case of the uniformly stratified quasigeostrophic model (Held167

et al. 1995), set 𝜎(𝑧) = 𝜎0. Then the vertical structure equation (2.10) along with boundary168
conditions (2.11) and (2.12) yield the exponentially decaying vertical structure Ψ𝑘 (𝑧) =169
exp (𝜎0 𝑘 𝑧). On substitutingΨ𝑘 (𝑧) into equation (2.16), we obtain a linear inversion function170

𝑚(𝑘) = 𝑘

𝜎0
(2.17)171

and hence [from the inversion relation (2.15)] a linear-in-wavenumber inversion relation172
𝜃𝒌 = −(𝑘/𝜎0) �̂�𝒌 .173

2.2. The inversion function and spatial locality174

The inversion function 𝑚(𝑘), which is determined by the stratification’s vertical structure,175
controls the spatial locality of the resulting turbulence. We illustrate this point with the176



6

following piecewise stratification profile,177

𝜎(𝑧) =


𝜎0 for − ℎmix < 𝑧 < 0
𝜎0 + Δ𝜎

(
𝑧+ℎmix
ℎlin

)
for − (ℎmix + ℎlin) < 𝑧 < −ℎmix

𝜎pyc for −∞ < 𝑧 < −(ℎmix + ℎlin),
(2.18)178

where Δ𝜎 = 𝜎0 − 𝜎pyc. At small horizontal scales, where 𝑘 ≫ 𝑘𝑠, and179

𝑘𝑠 = 1/(𝜎0 ℎmix) , (2.19)180

then 𝑚(𝑘) ≈ 𝑘/𝜎0, as in the uniformly stratified model of Held et al. (1995). Likewise, in181
the large-scale limit, where 𝑘 ≪ 𝑘pyc, and182

𝑘pyc =

{
1/

(
𝜎pyc ℎmix

)
for Δ𝜎 ⩽ 0

𝜎pyc/
(
𝜎2

0 ℎmix
)

for Δ𝜎 > 0,
(2.20)183

then 𝑚(𝑘) ≈ 𝑘/𝜎pyc. However, for wavenumbers between 𝑘pyc ≲ 𝑘 ≲ 𝑘𝑠, the inversion184
function takes an approximate power law form185

𝑚(𝑘) ≈ 𝑚0 𝑘
𝛼, (2.21)186

where 𝑚0 > 0 and 𝛼 ⩾ 0. The power 𝛼 depends on the ratio 𝜎pyc/𝜎0 between the deep187
and surface stratification. If the stratification decreases towards the surface [𝜎′(𝑧) ⩽ 0, or188
𝜎pyc/𝜎0 > 1] then 𝛼 > 1, with 𝜎pyc/𝜎0 → ∞ sending 𝛼 → 2. In contrast, if the stratification189
increases towards the surface [𝜎′(𝑧) ⩾ 0, or 𝜎pyc/𝜎0 < 1] then 𝛼 < 1, with 𝜎pyc/𝜎0 → 0190
sending 𝛼 → 0. Thus, for wavenumbers 𝑘pyc ≲ 𝑘 ≲ 𝑘𝑠, the inversion relation (2.15) has the191
approximate form192

𝜉𝒌 = −𝑘𝛼 �̂�𝒌 , (2.22)193

where 𝜉𝒌 = 𝜃𝒌/𝑚0, which is the inversion relation for 𝛼-turbulence (Pierrehumbert et al.194
1994; Smith et al. 2002; Sukhatme & Smith 2009). Figure 1 provides two examples, one195
with decreasing stratification (with 𝛼 ≈ 1.50) and another with increasing stratification (with196
𝛼 ≈ 0.49).197
To see how the parameter 𝛼 modifies the resulting dynamics, consider a point vortex198

at the origin, given by 𝜉 = 𝛿( |𝒙 |), where |𝒙 | is the horizontal distance from the vortex199
centre, and 𝛿( |𝒙 |) is the Dirac delta. If 𝛼 = 2, then the streamfunction induced by the point200
vortex is logarithmic, 𝜓( |𝒙 |) = log( |𝒙 |)/(2𝜋). If 0 < 𝛼 < 2, then 𝜓( |𝒙 |) = −𝐶𝛼/|𝒙 |2−𝛼201
where 𝐶𝛼 > 0 is a constant (Iwayama & Watanabe 2010). Smaller 𝛼 leads to vortices202
with velocities decaying more quickly with the horizontal distance |𝒙 |, and hence a shorter203
interaction range. Thus, the vertical stratification modifies the relationship between a surface204
buoyancy anomaly and its induced velocity field: a surface buoyancy anomaly over decreasing205
stratification [𝜎′(𝑧) ⩽ 0] generates a longer range velocity field than an identical buoyancy206
anomaly over increasing stratification [𝜎′(𝑧) ⩾ 0].207

2.3. Wave dispersion in variable stratification208

The background gradient term, Λ, in the time-evolution equation (2.4) allows for the209
propagation of surface-trapped Rossby waves. Substituting a wave solution of the form210
𝜓(𝑥, 𝑧, 𝑡) = Ψ𝑘 (𝑧) exp [i (𝒌 · 𝒓 − 𝜔𝑡)], where the vertical structure Ψ𝑘 (𝑧) satisfies the211
boundary value problem (2.10)–(2.12), into the time-evolution equation (2.4) yields the212
angular frequency213

𝜔(𝒌) = − Λ 𝑘𝑥

𝑚(𝑘) . (2.23)214
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Given the relationship (2.8) between themeridional surface buoyancy gradient d𝐵/d𝑦 |𝑧=0 and215
the frequency Λ, a poleward decreasing buoyancy gradient ( 𝑓 d𝐵/d𝑦 < 0) implies westward216
propagating (𝜔 < 0) Rossby waves.217
The dispersion relation (2.23) shows that Rossby wave dispersion is coupled to the flow’s218

interaction range and hence the stratification’s vertical structure. If we approximate the219
inversion function as a power law (2.21) between 𝑘pyc ≲ 𝑘 ≲ 𝑘𝑠, then the zonal phase speed,220
𝑐 = 𝜔/𝑘𝑥 , becomes 𝑐 ∼ 1/𝑘𝛼. Therefore, at these horizontal scales, Rossby waves are more221
dispersive over decreasing stratification (with 𝛼 > 1) than over increasing stratification (with222
𝛼 < 1). In the limit that 𝜎0 ≫ 𝜎pyc in which 𝛼 → 0, then 𝑐 ≈ constant, and so Rossby waves223
become non-dispersive.224

3. From edge waves to surface-trapped jets225

The emergence of jets in barotropic 𝛽-plane turbulence is due to two properties of the potential226
vorticity (Dritschel & McIntyre 2008; Scott & Dritschel 2019). The first is the resilience227
of strong latitudinal potential vorticity gradients to mixing (i.e., "Rossby wave elasticity",228
Dritschel & McIntyre 2008). Regions with weak latitudinal potential vorticity gradients are229
preferentially mixed, weakening the gradient in these regions and enhancing the gradient230
in regions where the latitudinal potential vorticity gradient is already strong (Dritschel &231
Scott 2011). The ultimate limit of such latitudinally inhomogeneous mixing is a potential232
vorticity staircase (Danilov & Gryanik 2004; Dritschel & McIntyre 2008; Scott & Dritschel233
2012), which consists of uniform regions of potential vorticity punctuated by sharp potential234
vorticity gradients. The second property is that, through potential vorticity inversion, strong235
(positive) latitudinal gradients in potential vorticity correspond to eastward jets. Therefore,236
inverting a potential vorticity staircase produces a flow with eastward zonal jets centred at237
the sharp frontal zones, with weaker westward flows in between (Scott & Dritschel 2019).238
However, the limit of a potential vorticity staircase is only achieved for sufficiently large239

values of the non-dimensional number 𝑘 𝜀/𝑘Rh (Scott & Dritschel 2012), which is a ratio of240
the forcing intensity wavenumber, 𝑘 𝜀 , to the Rhines wavenumber, 𝑘Rh. The forcing intensity241
wavenumber is given by (Maltrud & Vallis 1991)242

𝑘 𝜀 = (𝛽3/𝜀K )1/5, (3.1)243

where 𝜀K is the kinetic energy injection rate in the barotropic model, and is obtained by244
setting the turbulent strain rate equal to the Rossby wave frequency (Vallis & Maltrud 1993).245
The Rhines wavenumber is given by (Rhines 1975)246

𝑘Rh =
√︁
𝛽/𝑈rms, (3.2)247

where𝑈rms is the rms velocity. Scott & Dritschel (2012) found that the ratio 𝑘 𝜀/𝑘Rh controls248
the structure of zonal jets in barotropic 𝛽-plane turbulence; as 𝑘 𝜀/𝑘Rh is increased, the zonal249
jet strength increases and the potential vorticity gradient at the jet core becomes larger, with250
the staircase limit approached as 𝑘 𝜀/𝑘Rh ∼ 𝑂 (10).251
Jet formation in surface quasigeostrophic turbulence proceeds similarly, with the surface252

buoyancy (which is proportional to 𝜃) taking the role of the potential vorticity and the253
frequency, Λ, taking the role of the potential vorticity gradient, 𝛽. In this section, we first254
derive a non-dimensional number analogous to 𝑘 𝜀/𝑘Rh for surface quasigeostrophy. Then we255
consider how vertical stratification (and the non-locality parameter 𝛼) modifies jet structure256
in the buoyancy staircase limit, as well as how it modifies the relationship between the Rhines257
wavenumber and the jet spacing.258
Before proceeding, we comment on two differences between two-dimensional barotropic259
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turbulence and its surface quasigeostrophic counterpart. First, in the absence of forcing and260
dissipation, the kinetic energy,261

K = −1
2
𝜓∇2𝜓 =

1
2
|𝑢 |2, (3.3)262

is a conserved constant in two-dimensional barotropic turbulence (the overline denotes an263
area average). With a constant kinetic energy injection rate, 𝜀K , and a linear damping rate,264
𝑟 , the equilibrium kinetic energy is K = 𝜀K/2𝑟 . By definition, the rms velocity is given by265

𝑈rms =
√

2K. Combining this expression with the definition of the kinetic energy (3.3) and266
substituting into the definition of the Rhines wavenumber (3.2) yields a Rhines wavenumber267
expressed in terms of external parameters alone,268

𝑘Rh = 𝛽1/2(𝑟/𝜀K )1/4. (3.4)269

In contrast, in surface quasigeostrophy, the total energy,270

E = −1
2
𝜓 |𝑧=0 𝜃, (3.5)271

is a conserved constant in the absence of forcing and dissipation and there is no general272
relationship between the rms velocity, 𝑈rms, and the equilibrium total energy, E = 𝜀/2𝑟 ,273
where 𝜀 is the total energy injection rate in the surface quasigeostrophic model. Therefore, we274
are not generally able to express the Rhines wavenumber in terms of the external parameters275
𝜀, Λ, and 𝑟. Second, because E andK have different dimensions, the kinetic energy injection276
in the barotropic model, 𝜀K , has different dimensions than the total energy injection rate in277
the surface quasigeostrophic model, 𝜀. In particular, 𝜀 has dimensions of 𝐿2/𝑇3.278

3.1. The forcing intensity wavenumber279

To obtain the forcing intensity wavenumber, 𝑘 𝜀 , we compare the Rossby wave frequency280
(2.23) to the turbulent strain rate, 𝜔𝑠 (𝑘). If the inversion function is not approximately281
constant (i.e., 𝛼 ≠ 0) then the strain rate is (Yassin & Griffies 2022)282

𝜔𝑠 (𝑘) ∼ 𝜀1/3 𝑘4/3 [𝑚(𝑘)]−1/3 . (3.6)283

In particular, if 𝑚(𝑘) = 𝑚0 𝑘
𝛼, then 𝜔𝑠 (𝑘) ∼ 𝑚

1/3
0 𝜀1/3 𝑘 (4−𝛼)/3. Setting the absolute value284

of the Rossby wave frequency for waves with 𝑘 = 𝑘𝑥 equal to the turbulent strain rate (3.6)285
yields the condition286

𝑘 𝜀 [𝑚(𝑘 𝜀)]2 ∼ |Λ|3

𝜀
. (3.7)287

A solution to this equation always exists because d𝑚/d𝑘 ⩾ 0. If the inversion function takes288
the power law form (2.21), then we obtain289

𝑘 𝜀 =

(
|Λ|3

𝑚2
0 𝜀

)1/(2𝛼+1)

, (3.8)290

which is equivalent to a wavenumber derived in Smith et al. (2002).291

3.2. The damping rate wavenumber and the Rhines wavenumber292

Suppose the inversion function takes an approximate power law form, 𝑚(𝑘) ≈ 𝑚0 𝑘
𝛼, near293

the energy containing wavenumbers. Then the generalization of the Rhines wavenumber at294
these wavenumbers is295

𝑘Rh =

(
Λ

𝑚0 𝑈rms

)1/𝛼
. (3.9)296
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However, unlike in two-dimensional barotropic turbulence where 𝑈rms =
√

2K =
√︁
𝜀K/𝑟 ,297

we do not have a general relationship between 𝑈rms and the external parameters 𝑟 and 𝜀 in298
surface quasigeostrophic turbulence. To obtain a second wavenumber that depends on the299
damping rate, 𝑟 , we follow Smith et al. (2002). From dimensional considerations, the energy300
spectrum at small wavenumbers is301

𝐸Λ(𝑘) ∼ Λ2 𝑘−(𝛼+3)/𝑚0. (3.10)302

Then, defining 𝑘𝑟 as the wavenumber at which the inverse cascade halts, we obtain303

𝜀

2𝑟
≈

∫ ∞

𝑘𝑟

𝐸 (𝑘) d𝑘 ≈
(
Λ2/𝑚0

𝛼 + 2

)
𝑘
−(𝛼+2)
𝑟 , (3.11)304

where the second equality follows because the integral is dominated by its peak at low305
wavenumbers. Solving for 𝑘𝑟 and neglecting any non-dimensional coefficients, we obtain306

𝑘𝑟 =

(
Λ2 𝑟

𝑚0 𝜀

)1/(𝛼+2)
. (3.12)307

Note that the damping rate wavenumber, 𝑘𝑟 , has the same dependence on Λ, 𝜀, and 𝑟 as the308
Rhines wavenumber, 𝑘Rh, only if 𝛼 = 2.309

3.3. Surface potential vorticity inversion310

A perfect surface potential vorticity staircase consists of mixed zones of halfwidth 𝑏, where311
d𝜃/d𝑦 = −Λ, separated by jump discontinuities at which d𝜃/d𝑦 = ∞. We find it more312
conveniant to work with the relative surface potential vorticity, 𝜃, rather than the total surface313
potential vorticity, 𝜃 + Λ 𝑦. In this case, if the total surface potential vorticity, 𝜃 + Λ 𝑦, is314
a perfect staircase with step width 2𝑏, then the relative surface potential vorticity, 𝜃, is a315
2𝑏-periodic sawtooth wave.316
Our first question is whether such a staircase is possible for general 𝑚(𝑘). To answer this317

question, we consider the velocity field induced by a jump discontinuity in 𝜃. For a jump318
discontinuity in an infinite domain,319

𝜃 =

{
Δ𝜃 for 0 < 𝑦 < ∞
0 for −∞ < 𝑦 < 0,

(3.13)320

the zonal velocity is given by321

𝑢 =
Δ𝜃

2𝜋

∫ ∞

−∞

ei 𝑘𝑦 𝑦

𝑚
(��𝑘𝑦 ��) d𝑘𝑦 . (3.14)322

If 𝑚(𝑘) = 𝑚0 𝑘
𝛼, then this expression is proportional to |𝑦 |𝛼−1 if 𝛼 ≠ 1 and logarithmic323

otherwise, and so the zonal velocity diverges at 𝑦 = 0 if 𝛼 ⩽ 1. Consequently, we expect that324
a perfect staircase should not be possible over constant or increasing stratification due to the325
divergence of the zonal velocity at a jump discontinuity.326
We therefore consider the more general case of a sloping staircase, where there is a finite327

frontal zone of width 2𝑎 between the mixed zones. In this case, 𝜃 is a 2(𝑎 + 𝑏)-periodic328
sloping sawtooth wave (see figure 2), and is given by the periodic extension of329

𝜃 = Λ


− [𝑦 − (𝑎 + 𝑏)] for 𝑎 < 𝑦 < 𝑎 + 𝑏
𝑏
𝑎
𝑦 for |𝑦 | ⩽ 𝑎

− [𝑦 + (𝑎 + 𝑏)] for − (𝑎 + 𝑏) < 𝑦 < −𝑎.
(3.15)330
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Figure 2: Panel (a) shows a sloping sawtooth function (thick black line) along with its
derivative (thin black line). Panel (b) shows the normalized zonal velocity induced by the
sloping sawtooth function in panel (a) for various values of the parameter 𝛼. Panel (c)
shows the normalized zonal velocity induced by the sawtooth function in (a) in the
increasing (blue line) and decreasing stratifications (red line) shown in figure 1.

The meridional gradient d𝜃/d𝑦 is then a piecewise constant 2(𝑎 + 𝑏)-periodic function331

d𝜃
d𝑦

= Λ


−1 for 𝑎 < 𝑦 < 𝑎 + 𝑏
𝑏
𝑎

for |𝑦 | ⩽ 𝑎

−1 for − (𝑎 + 𝑏) < 𝑦 < −𝑎.
(3.16)332

Therefore the gradient in the frontal zones exceeds the gradient in the mixed zones by a factor333
of 𝑏/𝑎, which approaches infinity as 𝑏/𝑎 → ∞ in the sawtooth wave limit.334
The zonal velocity, 𝑢 = −𝜕𝑦𝜓, is obtained by using the inversion relation (2.15) to solve335

for the streamfunction. Alternatively, taking the meridional derivative of surface potential336
vorticity (2.3) gives337

𝜕𝜃

𝜕𝑦
=

1
𝜎2

0

𝜕𝑢

𝜕𝑧

���
𝑧=0

. (3.17)338

Then in Fourier space [𝜕𝑦 → i𝑘𝑦 and 𝜎−2
0 𝜕𝑧 |𝑧=0 → 𝑚(𝑘)] we obtain339

�̂�𝒌 =
1

𝑚(𝑘)
(
i 𝑘𝑦 𝜃𝒌

)
, (3.18)340

which shows that the induced zonal velocity is obtained by smoothing d𝜃/d𝑦 by the function341
𝑚(𝑘). An immediate consequence is that the east-west asymmetry in the zonal velocity is342
fundamentally due to the east-west asymmetry in the gradient d𝜃/d𝑦.343
Figure 2 shows an example of sloping sawtooth 𝜃 profile along with the induced zonal344

velocities. For a power law inversion function, 𝑚(𝑘) = 𝑚0𝑘
𝛼, the parameter 𝛼 modifies the345

zonal velocity in two ways. First, in more local flows (with smaller 𝛼), the zonal velocity346
decays more rapidly away from the jet centre, as expected. Second, the degree of smoothing347
increases with 𝛼, and so more local regimes (with smaller 𝛼) are more east-west asymmetric,348

Rapids articles must not exceed this page length
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Figure 3: Properties of zonal velocity profiles induced by sloping sawtooth profiles (3.15)
of 𝜃 as a function of the non-dimensional frontal zone width 𝑎/𝑏 separating the mixed
zones for four values of 𝛼. Panel (a) shows the maximum zonal velocity, panel (b) shows
the ratio of westward speed to eastward speed, panel (c) shows the rms zonal velocity, and
panel (d) shows the product 𝐿 𝑗 𝑘Rh where 𝐿 𝑗 = 𝑎 + 𝑏 is the halfwidth separation (the

distance between𝑈mix and𝑈min) and 𝑘Rh is the Rhines wavenumber (3.9).

with the ratio |𝑢min | /𝑢max taking smaller values for smaller 𝛼. Figure 3(b) shows |𝑢min | /𝑢max349
as a function of 𝑎/𝑏 for 𝛼 ∈ {1/2, 1, 3/2, 2}. For 𝛼 = 2, we obtain |𝑢min | /𝑢max → 1/2 in350
the limit 𝑎/𝑏 → 0 so that eastward jets are only twice as strong as westward flows in the351
perfect staircase limit (Danilov & Gurarie 2004; Dritschel & McIntyre 2008). At 𝛼 = 3/2,352
we find |𝑢min | /𝑢max ≈ 0.29 in the 𝑎/𝑏 → 0 limit so that eastward jets are now more than353
three time as strong as westward flows. Once 𝛼 ⩽ 1, then the maximum jet velocity diverges354
as 𝛼 → 0 [figure 3(a)] and so |𝑢min | /𝑢max → 0 as 𝑎/𝑏 → 0.355
If𝑚(𝑘) is not a power law, then the results are similar so long as𝑚(𝑘) can be approximated356

by a power law at small wavenumbers. Figure 2 shows the induced velocity for the inversion357
functions computed from idealized stratifications profiles (shown in figure 1). Because these358
inversion functions can be approximated by power laws 𝑚(𝑘) ≈ 𝑘0.49 and 𝑚(𝑘) ≈ 𝑘1.50359
at small wavenumbers, the induced velocity fields nearly coincide with the velocity fields360
computed from power law inversion functions with 𝛼 = 0.5 and 𝛼 = 1.5.361
Finally, we examine how the Rhines wavenumber, 𝑘Rh, relates to jet spacing. Let362

𝐿 𝑗 = 𝑎 + 𝑏 (3.19)363

be the half-separation between the jets, i.e., the half distance between consecutive zonal364
velocity maxima. For two-dimensional barotropic turbulence (i.e., the 𝛼 = 2 case), we have365
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𝐿 𝑗 = 451/4/𝑘Rh ≈ 2.59/𝑘Rh in the staircase limit (i.e, for 𝑎/𝑏 → 0, Dritschel & McIntyre366
2008; Scott & Dritschel 2012). This result is found by solving for the zonal velocity induced367
by a staircasewith halfwidth 𝐿 𝑗 = 𝑏, taking the rms of the zonal velocity, and then substituting368
into the definition of the generalized Rhines wavenumber (3.9). As figure 3(d) shows, because369
the velocity field induced by a perfect staircase depends on the inversion function, 𝑚(𝑘), the370
relationship between 𝐿 𝑗 and 𝑘Rh also depends on the inversion function. For𝑚(𝑘) = 𝑘3/2, an371
analogous calculation gives 𝐿 𝑗 ≈ 2.35/𝑘Rh in the staircase limit. For 𝛼 = 1, even though the372
maximum velocity diverges at 𝑎/𝑏 → 0, the rms velocity asymptotes to a constant value, and373
so we obtain a half jet-separation of 𝐿 𝑗 ≈ 1.73/𝑘Rh (figure 3). Finally in the 𝛼 = 1/2 case,374

although the rms speed has not converged by 𝑎/𝑏 = 10−6, the product 𝐿 𝑗 𝑘Rh is approaching375
values close to zero.376

4. Numerical Simulations377

4.1. The numerical model378

We use the pyqg pseudo-spectral model (Abernathey et al. 2019) which solves the time-379
evolution equation (2.4) in a square domain with side length 𝐿 = 2𝜋. Time-stepping is380
through a third-order Adam-Bashforth scheme with small-scale dissipation achieved through381
a scale-selective exponential filter (Smith et al. 2002; Arbic & Flierl 2003),382

ssd =

{
1 for 𝑘 ⩽ 𝑘0

𝑒−𝑎 (𝑘−𝑘0)4 for 𝑘 > 𝑘0,
(4.1)383

with 𝑎 = 23.6 and 𝑘0 = 0.65𝑘Nyq where 𝑘Nyq = 𝜋 is the Nyquist wavenumber. The forcing is384
isotropic, centred at wavenumber 𝑘 𝑓 = 80, and normalized so that the energy injection rate385
is 𝜀 = 1 (see appendix B in Smith et al. 2002). However, the effective energy injection rate,386
𝜀eff , is smaller than 𝜀 due to dissipation. To determine 𝜀eff from numerical simulations, we387
use 𝜀eff = 2 𝑟 E where E is the equilibrated total energy diagnosed from the model. In what388
follows, we report values of 𝑘 𝜀/𝑘𝑟 using 𝜀eff instead of 𝜀. The model is integrated forward389
in time until at least 𝑡 = 5/𝑟 to allow the fluid to reach equilibrium. All model runs use 10242390
horizontal grid points.391

4.2. For what values of 𝑘 𝜀/𝑘𝑟 do jets form?392

For our first set of simulations, we vary 𝑘 𝜀/𝑘𝑟 over the values shown in figure 4. We do so by393
fixing 𝑘𝑟 = 8 and varying 𝑘 𝜀 . For a given value of 𝑘 𝜀 , we choose Λ and 𝑟 so as to maintain394
𝑘𝑟 = 8 (the energy injection rate, 𝜀, is fixed at unity for all model runs). Given 𝑘𝑟 and 𝑘 𝜀 ,395
we rearrange the definition of 𝑘𝑟 (3.12) to solve for 𝛾 = 𝑟 Λ2,396

𝛾 = 𝑚0 𝜀 𝑘
𝛼+2
𝑟 , (4.2)397

then solve for 𝑟 in the implicit equation (3.7) for 𝑘 𝜀 ,398

𝑟 =
𝛾(

𝜀 𝑘 𝜀 [𝑚(𝑘 𝜀)]2)2/3 , (4.3)399

and finally use the definition 𝛾 = 𝑟 Λ2 to solve for Λ.400

4.2.1. Power law inversion functions401

We first describe the results from three series of simulations with power law inversion402
functions, 𝑚(𝑘) = 𝑘𝛼, with 𝛼 ∈ {1/2, 1, 3/2}. Summary diagnostics from these simulations403
are shown in figure 4. In panel (a), we observe that the ratio of energy in the zonal mode to404
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Figure 4: Diagnostics from five series of simulations as a function of the non-dimensional
number 𝑘 𝜀/𝑘𝑟 . The first three series of simulations have inversion function 𝑚(𝑘) = 𝑘𝛼

with 𝛼 ∈ {1/2, 1, 3/2}. For the other two series, the inversion functions are shown in figure
8. Panel (a) shows the ratio of energy in the zonal mode to total energy. Panel (b) shows
the ratio of domain averaged zonal speed to domain averaged meridional speed. Panel (c)
shows the ratio of westward zonal speed to eastward zonal speed. Panel (d) shows the
relationship between the halfwidth jet spacing, 𝐿 𝑗 , and the Rhines wavenumber, 𝑘Rh.

total energy, Ezonal/E, increases with 𝑘 𝜀/𝑘𝑟 , and that the majority of the total energy is in the405
zonal mode for sufficiently large 𝑘 𝜀/𝑘𝑟 . For a fixed 𝑘 𝜀/𝑘𝑟 , more of the total energy is zonal406
in more non-local flows (with larger 𝛼) than in more local flows (with smaller 𝛼); for 𝛼 = 3/2,407
we have Ezonal/E ≈ 1 by 𝑘 𝜀/𝑘𝑟 ≈ 6 as compared to 𝑘 𝜀/𝑘𝑟 ≈ 12 for 𝛼 = 1. Moreover, for408
𝛼 = 1/2, we find that Ezonal/E asymptotes to approximately 0.9 once 𝑘 𝜀/𝑘𝑟 ≈ 18 with little409
subsequent change for larger values of 𝑘 𝜀/𝑘𝑟 . In panel (b), we observe a striking contrast410

in the ratio |𝑢 |/|𝑣 | between different values of 𝛼 (the overline denotes a domain average).411

For 𝛼 = 3/2, the domain averaged zonal speed, |𝑢 |, is approximately eight times larger than412

the domain averaged meridional speed, |𝑣 |, for large 𝑘 𝜀/𝑘𝑟 . In contrast, for 𝛼 = 1/2, |𝑢 | only413

exceeds |𝑣 | by a multiple of two for large 𝑘 𝜀/𝑘𝑟 .414
Next, we examine the jet structure for different 𝛼 as a function of 𝑘 𝜀/𝑘𝑟 . Figure 5 shows415

𝜃-snapshots from model runs with 𝑚(𝑘) = 𝑘𝛼. For each value of 𝛼, two model runs are416
shown: one where jets have just become visible in the 𝜃-snapshot and another with the largest417
value of 𝑘 𝜀/𝑘𝑟 , which we expect to be closest to the staircase limit. The jets are visible in418
these snapshots as the regions with strong gradients. Because these are 𝜃-snapshots rather419
than (𝜃 +Λ 𝑦)-snapshots, the (𝜃 +Λ 𝑦)-staircase is instead a 𝜃-sawtooth, and the mixed zones420
between the jets are approximately linear in 𝜃. We confirm this to be the case in figure 6,421
where the zonal averages of the total surface potential vorticity, 𝜃+Λ 𝑦, and the zonal velocity422
are shown. For the 𝛼 = 3/2 and 𝛼 = 1 cases, we observe an approximate staircase structure423
with nearly uniform mixed zones separated by frontal zones, and with jets centred at sharp 𝜃424
gradients. As expected from the idealized staircases of section 3, close to the staircase limit,425
the 𝛼 = 1 jets are narrower than the 𝛼 = 3/2 jets, and the ratio of maximum westward speed426
to maximum eastward speed, |𝑈min |/|𝑈max |, is smaller at 𝛼 = 1 than at 𝛼 = 3/2.427
In contrast to the 𝛼 = 3/2 and the 𝛼 = 1 series, the 𝛼 = 1/2 series approaches the staircase428

limit slowly with 𝑘 𝜀/𝑘𝑟 . The 𝛼 = 1/2 staircase remains smooth even at 𝑘 𝜀/𝑘𝑟 = 42 [figure429
6(c)]. The ratio of frontal zone width to mixed zone width, 𝑎/𝑏, is between 0.5 and 0.65 for430
𝛼 = 1/2 jets. In contrast, this ratio is between 0.15 and 0.2 for the 𝛼 = 3/2 and 𝛼 = 1 jets.431
In part, the broadness of the 𝛼 = 1/2 frontal zones is a consequence of zonal averaging in432
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Figure 5: Snapshots of the relative surface potential vorticity, 𝜃, for simulations with
power law inversion functions, 𝑚(𝑘) = 𝑘𝛼. In each snapshot, the 𝜃 field is normalized by
its maximum value in the snapshot. Only one quarter of the domain is shown (i.e., 5122

grid points).

the presence of large amplitude undulations. However, it is evident from the 𝜃-snapshots of433
figure 5 that the 𝛼 = 1/2 frontal zones are indeed broader than the 𝛼 = 3/2 and 𝛼 = 1 frontal434
zones [e.g., compare panels (a) and (d) with (f) in figure 5], even without zonal averaging.435
We now examine how the generalized Rhines wavenumber, 𝑘Rh, relates to the jet spacing.436

From figure 3(d), a ratio of 𝑎/𝑏 ≈ 0.2 leads to a 𝐿 𝑗 𝑘Rh ≈ 2.2 for 𝛼 = 3/2 and 𝐿 𝑗 𝑘Rh ≈ 2.0 for437
𝛼 = 1. But as figure 4(d) shows, we find values closer to 𝐿 𝑗 𝑘Rh ≈ 3 for both of these cases.438
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Figure 6: The zonal mean total surface potential vorticity, 𝜃 + Λ 𝑦, in black and the zonal
mean zonal velocity,𝑈, in grey.

In contrast, for the 𝛼 = 1/2 jets, figure 3(d) predicts 1.98 ≲ 𝐿 𝑗 𝑘Rh ≲ 2.5 for the observed439
range of 0.5 ≲ 𝑎/𝑏 ≲ 0.65, but we find 𝐿 𝑗 𝑘Rh ≈ 1.5 for 𝑘 𝜀/𝑘𝑟 ⩾ 18, which is smaller than440
predicted.441
Returning to figure 5, we observe that there are undulations along the jets, with smaller442

values of 𝛼 corresponding to larger amplitude undulations. These undulations propagate443
as waves and are less dispersive for smaller 𝛼, propagating eastward for 𝛼 = 3

2 , westward444
for 𝛼 = 1/2, and are nearly stationary for 𝛼 = 1. Moreover, the waves in the 𝛼 = 1/2 case445
maintain their shape as they propagate for a significant fraction of the domain, although they446
eventually disperse or merge with other along jet waves. That we obtain larger amplitude447
along jet undulations for smaller 𝛼 is a consequence of the more local inversion operator448
(2.15) at smaller 𝛼. A jet in a highly local flow (with small 𝛼) is “a coherent structure that449
hangs together strongly while being easy to push sideways” (McIntyre 2008, in the context450
of equivalent barotropic jets). However, although both an equivalent barotropic jet and an451
𝛼 = 1/2 jet exhibit large meridional undulations, the undulations in the equivalent barotropic452
case are frozen in place (because of a vanishing group velocity at large scales, McIntyre453
2008) and so the equivalent barotropic jet behaves like a meandering river with a fixed shape.454
In contrast, the 𝛼 = 1/2 jet behaves like a flexible string whose shape evolves in time with the455
propagation of weakly dispersive waves. Another difference between the two cases is that456
an equivalent barotropic jet has a width given by the deformation radius. In contrast, there457
is no analogous characteristic scale for 𝛼 = 1/2 jets and, in principle, the jets should become458
infinitely thin as 𝑘 𝜀/𝑘𝑟 → ∞.459
Energy spectra for the three power law simulations are shown in figure 7. The energy460

spectrum obtained from dimensional analysis (3.10) gives a 𝑘−𝛼−3 wavenumber dependence,461
which leads to the familiar 𝑘−5 spectrum for beta-plane barotropic turbulence (𝛼 = 2).462
Although early investigations (Chekhlov et al. 1996; Huang et al. 2000; Danilov & Gryanik463
2004) found a 𝑘−5 spectrum in barotropic 𝛽-plane turbulence, Scott & Dritschel (2012)464
instead found a shallower 𝑘−4 spectrum in the staircase limit (suggested earlier by Danilov465
& Gryanik 2004; Danilov & Gurarie 2004), which they explained as a consequence of the466
sharp discontinuities of the staircase. Generalizing their argument to the present case, a467
one dimensional 𝜃 (𝑦) series with discontinuities implies a Fourier series with coefficients468
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Figure 7: The total energy spectrum, 𝐸 (𝑘), as a function of the wavenumber, 𝑘 = 𝑘2
𝑥 + 𝑘2

𝑥 ,
for three simulations with power law inversion functions, 𝑚(𝑘) = 𝑘𝛼. The values of

𝑘 𝜀/𝑘𝑟 are 18.0 for panel (a), 21.0 for panel (b), and 42.3 for panel (c).

Figure 8: Inversion functions [panel (a) and (c)] along with their corresponding
stratification profiles [panels (b) and (d), respectively]. The stratification profiles are given
by the piecewise function (2.18). For panel (a), we have 𝜎0 = 1, 𝜎pyc = 0.1, ℎmix = 0.01,
and ℎlin = 0.05. For panel (c), we have 𝜎0 = 0.133, 𝜎pyc = 1, ℎmix = 0.125, and
ℎlin = 0.2. The thin grey lines in panels (a) and (c) are given by 𝑘/𝜎0 and 𝑘/𝜎pyc.

decaying as 𝑘−1, leading to a 𝜃2 spectrum of 𝑘−2, and hence an energy spectrum469

𝐸 (𝑘) ∼ 𝑘−2 [𝑚(𝑘)]−1 . (4.4)470

If 𝑚(𝑘) ∼ 𝑘𝛼, then we obtain a spectrum 𝐸 (𝑘) ∼ 𝑘−𝛼−2, which yields the 𝑘−4 spectrum471
observed in Scott & Dritschel (2012), where 𝛼 = 2. For 𝛼 = 3/2, 𝛼 = 1, and 𝛼 = 1/2,472
the predicted spectrum is proportional to 𝑘−3.5, 𝑘−3, and 𝑘−2.5, respectively. The diagnosed473
spectra shown in figure 7 are consistent with these shallow spectra, instead of energy spectrum474
(3.10) obtained from dimensional considerations.475
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Figure 9: Snapshots of the relative surface potential vorticity, 𝜃, normalized by its
maximum value in the snapshot, for simulations with inversion functions shown in figure

8. Only one quarter of the domain is shown (i.e., 5122 grid points).

4.2.2. Inversion functions from 𝜎(𝑧)476

We also ran two series of simulations where we specified a piecewise stratification profile477
(2.18), and then obtained 𝑚(𝑘) by solving the boundary value problem (2.10)–(2.12) at each478
wavenumber. The stratification profiles and the resulting inversion functions are shown in479
figure 8. One case consists of an increasing stratification profile [𝜎′(𝑧) ⩾ 0] with 𝜎0 = 1,480
𝜎pyc = 0.1, ℎmix = 0.01 and ℎlin = 0.05. The resulting 𝑚(𝑘) is approximately linear for481

𝑘 ≳ 70 and transitions to an approximate sub-linear wavenumber dependence 𝑚(𝑘) ∼ 𝑘0.40482
for wavenumbers 5 ≲ 𝑘 ≲ 50. The second case consists of a decreasing stratification profile483
[𝜎′(𝑧) ⩽ 0] with 𝜎0 = 0.13, 𝜎pyc = 1, ℎmix = 0.125 and ℎlin = 0.2. The resulting 𝑚(𝑘) is484
approximately linear at wavenumbers 𝑘 ≳ 60 and transitions to an approximate super linear485
wavenumber dependence 𝑚(𝑘) ∼ 𝑘1.50 between 3 ≲ 𝑘 ≲ 60.486

As seen in figure 4, the 𝜎′(𝑧) ⩽ 0 case is similar to the 𝛼 = 3/2 case, with the various487
diagnostics close to the 𝛼 = 3/2 counterpart. In contrast, there are significant differences488
between the 𝜎′(𝑧) ⩾ 0 simulations and the 𝛼 = 1/2 simulations. In the 𝜎′(𝑧) ⩾ 0 series, the489
ratio of energy in the zonal mode to total energy continues to increase as 𝑘 𝜀/𝑘𝑟 is increased,490
whereas it asymptotes to a constant in the 𝛼 = 1/2 series. Moreover, the ratio of domain491

average zonal speed to domain averaged meridional speed, |𝑢 |/|𝑣 |, is generally larger in the492
𝜎 ⩾ 0 series than in the 𝛼 = 1/2 series. Finally, for the largest values of 𝑘 𝜀/𝑘𝑟 , the product493
𝐿 𝑗 𝑘Rh reaches smaller values in the 𝜎 ⩾ 0 simulations than in the 𝛼 = 1/2 simulations.494

These differences can be explained by the snapshots of figure 9 as well as the zonal averages495
of figure 6. As expected from the model diagnostics, both the snapshots and the zonal average496
from the 𝜎′ ⩽ 0 simulation are qualitatively similar to the 𝛼 = 3/2 simulation. In contrast,497
the 𝜎′ ⩾ 0 snapshot is evidently closer to the staircase limit than the 𝛼 = 1/2 snapshot: the498
mixed zones are more homogeneous and the frontal zones are sharper. The zonal average499
of the 𝜎′ ⩾ 0 simulation in figure 6 also shows how the 𝜎′ ⩾ 0 simulation is closer to the500
staircase limit than the 𝛼 = 1/2 simulation, although, again, zonal averaging in the presence501
of large amplitude undulations is artificially smoothing the jets. Therefore, the differences in502
the diagnostics between the 𝜎′ ⩾ 0 series and the 𝛼 = 1/2 series stem from the more rapid503
approach (i.e., at smaller 𝑘 𝜀/𝑘𝑟 ) of the 𝜎′ ⩾ 0 series to the staircase limit.504
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Figure 10: As in figure 4, but the 𝜎′ ⩾ 0 and 𝜎′ ⩽ 0 series now only differ from the
𝜎′ = 0 (i.e., 𝛼 = 1) series only in the vertical stratification (and hence the inversion

function).

4.3. Simulations with fixed parameters505

The dependence of the non-dimensional number 𝑘 𝜀/𝑘𝑟 on the external parameters 𝜀,Λ, and506
𝑟 depends on the functional form of 𝑚(𝑘). For example, if 𝑚(𝑘) ∼ 𝑘𝛼, then507

𝑘 𝜀/𝑘𝑟 = |Λ|
4−𝛼

(2𝛼+1) (𝛼+2) 𝜀
𝛼−1

(1+2𝛼) (𝛼+2) 𝑟
−1
𝛼+2 . (4.5)508

Because the forcing intensity wavenumber, 𝑘 𝜀 , is obtained by solving the implicit equation509
for 𝑘 𝜀 (3.7), an analogous expression for 𝑘 𝜀/𝑘𝑟 is not possible for general 𝑚(𝑘). However,510
at sufficiently large 𝑘 𝜀 , the inversion function asymptotes to 𝑚(𝑘 𝜀) ≈ 𝑘 𝜀/𝜎0 and so, using511
𝛼-turbulence expression for 𝑘 𝜀 (3.8) with 𝛼 = 1, we obtain512

𝑘 𝜀/𝑘𝑟 ≈ |Λ| 𝛼
𝛼+2 𝜀

1−𝛼
3𝛼+6 𝑟

−1
𝛼+2 𝑚

1
𝛼+2
0 𝜎

2/3
0 (4.6)513

for large 𝑘 𝜀 , where 𝛼 is the approximate power law dependence of 𝑚(𝑘) near 𝑘𝑟 .514
Therefore, simulations with identical 𝑘 𝜀/𝑘𝑟 but distinct inversion functions cannot be515

directly compared because they have different values of Λ and 𝑟 . Here, we investigate how516
the stratification modifies jet structure as all other parameters are held fixed.We therefore run517
two additional series of simulations with the stratification profiles and inversion functions518
shown in figure 1. The stratification profiles were chosen so that they both have identical519
stratification at the upper boundary. One case corresponds to an increasing stratification520
profile, 𝜎′ ⩾ 0, with an approximate power law dependence of 𝑚(𝑘) ∼ 𝑘0.49 at small521
wavenumbers. The second case consists of a decreasing stratification profile, 𝜎′ ⩽ 0, with522
a 𝑚(𝑘) ∼ 𝑘1.50 at small wavenumbers. Aside from the different stratification profiles, these523
two series of simulations are run under the same conditions as the constant stratification524
(𝛼 = 1) simulations of section 4.2, with identical values of Λ, 𝜀, and 𝑟 .525
Summary diagnostics are shown in figure 10. We see that, at a fixed value of Λ and 𝑟 ,526

more of the total energy is in the zonal mode in the 𝜎′(𝑧) ⩽ 0 simulation than in the527
constant stratification simulation, which in turn is larger than the 𝜎′(𝑧) ⩾ 0 simulation528

(and similarly for the ratio of area averaged zonal to meridional speeds, |𝑢 |/|𝑣 |). Therefore,529
increased non-locality (larger 𝛼) promotes anisotropy in the velocity field and leads to larger530
zonal velocities relative to meridional velocities. Indeed, figure 11 shows 𝜃 snapshots from531
these simulations; the more local, 𝜎′ ⩾ 0, simulations have larger meridional undulations532
along the jets. Moreover, compared to the 𝑘 𝜀/𝑘𝑟 = 15 constant stratification simulation in533
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Figure 11: Snapshots of relative surface potential vorticity, 𝜃, where 𝜃 is normalized by its
maximum value in the snapshot. Panels (a) and (c) are from simulations with identical Λ,
𝑟, and 𝜀 as the 𝛼 = 1 simulation shown in figure 5(c), whereas panels (b) and (d) are from
simulations with identical Λ, 𝑟 , and 𝜀 as the 𝛼 = 1 simulation shown in figure 5(d). Only

one quarter of the domain is shown (i.e., 5122 grid points).

figure 5(c), the 𝜎′(𝑧) ⩽ 0 simulation in figure 11(a) is closer to the staircase limit whereas534
the frontal zones in the 𝜎′(𝑧) ⩾ 0 simulation [figure 11(c)] remain broad. Finally, we show535
values of the product 𝐿 𝑗 𝑘Rh, relating the Rhines wavenumber to the half spacing between536
the jets, in figure 10(c). These values are similar to those in shown in figure 4(c).537

5. Conclusion538

We have examined the emergence of staircase-like buoyancy structures in surface quasi-539
geostrophic turbulence with a mean background buoyancy gradient. We found that the540
stratification’s vertical structure controls the locality of the inversion operator and the541
dispersion of surface-trapped Rossby waves. As we go from decreasing stratification profiles542
[𝜎′(𝑧) ⩽ 0] to increasing stratification profiles [𝜎′(𝑧) ⩾ 0], the inversion operator543
becomes more local and Rossby wave less dispersive. In all cases, we find that the non-544
dimensional ratio, 𝑘 𝜀/𝑘𝑟 , controls the extent of inhomogeneous buoyancy mixing. Larger545
𝑘 𝜀/𝑘𝑟 correspond to sharper buoyancy gradients at jet centres with larger peak jet velocities546
that are separated by more homogeneous mixed-zones. Moreover, we found that the staircase547
limit is reached at smaller 𝑘 𝜀/𝑘𝑟 in more non-local flows; the staircase limit is reached by548
𝑘 𝜀/𝑘𝑟 ≈ 15 for our 𝜎 ⩽ 0 simulations compared to 𝑘 𝜀/𝑘𝑟 ≈ 25 for our 𝜎 ⩾ 0 simulations.549
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In addition, once the staircase limit is reached, the dynamics of the jets depends on the550
locality of the inversion operator and, hence, on the stratification’s vertical structure. In551
flows with a more non-local inversion operator [or decreasing stratification, 𝜎′(𝑧) ⩽ 0], we552
obtain straight jets that are perturbed by dispersive, eastward propagating, along jet waves.553
In contrast, for more local flows [or over increasing stratification, 𝜎′(𝑧) ⩾ 0], we obtain jets554
with latitudinal meanders on the order of the jet spacing. The shape of these jets evolves in555
time as these meanders propagate westwards as weakly dispersive waves.556
The inversion operator’s locality is also reflected in two more aspects of the dynamics.557

First, the domain-averaged zonal speed exceeds the domain-averaged meridional speed by558
approximately a factor of eight in our most non-local simulations, whereas this ratio is559
merely two in our most local simulations. This observation is consistent with the fact that560
jets are narrower and exhibit larger latitudinal meanders in more local flows. Second, for561
a given Rhines wavenumber, jets in more local flows are closer together. Indeed, we found562
𝐿 𝑗 𝑘Rh ≈ 3 − 4 in our most non-local simulations, where 𝐿 𝑗 is the jet half spacing, as563
compared to 𝐿 𝑗 𝑘Rh ≈ 0.5 − 1.5 in our most local simulations.564
Several open questions remain. First, we have not examined the dynamics of the along jet565

waves. As we observed, these waves propagate eastwards in our most non-local simulations566
[with 𝜎′(𝑧) ⩽ 0] but westwards for our most local simulations [with 𝜎′(𝑧) ⩾ 0]. These567
waves are not described by the dispersion relation (2.23); rather, the relevant model is that of568
freely propagating edgewaves along a buoyancy discontinuity (McIntyre 2008). However, the569
difficulty here is that a jump discontinuity in the buoyancy field results in infinite velocities570
over constant or increasing stratification. In addition, the relationship of the along jet waves571
in the staircase limit to the non-linear zonons found by Sukoriansky et al. (2008) remains572
unclear.573
The divergence of the velocity at a buoyancy discontinuities raises a second question. Is574

there a limit to how close the staircase limit can be approached? In barotropic dynamics,575
the velocity remains finite at a jump continuity in the vorticity, and, in this case, Scott &576
Dritschel (2012) report that a vorticity staircase case can be approached arbitrarily. Whether577
this result continues to hold for arbitrarily sharp buoyancy gradients and arbitrarily large578
zonal velocities is not clear. Because the rms velocity seems to converge for arbitrarily sharp579
staircases, even for the most local inversion relations we considered, there may not be any580
energetic reason precluding arbitrarily sharp buoyancy gradients.581
Finally, there remains the question of how relevant these results are for the upper ocean,582

which, in addition to surface buoyancy gradients, has interior potential vorticity gradients as583
well. In particular, our neglect of the 𝛽-effect limits the direct relevance of this model to the584
upper ocean. Whether surface buoyancy staircases can emerge under more realistic oceanic585
conditions requires further investigation.586
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